Space-time Adaptive Processing Based on Weighted Regularized Sparse Recovery

نویسندگان

  • Z. C. Yang
  • X. Li
  • H. Q. Wang
چکیده

In this paper, novel space-time adaptive processing algorithms based on sparse recovery (SR-STAP) that utilize weighted l1-norm penalty are proposed to further enforce the sparsity and approximate the original l0-norm. Because the amplitudes of the clutter components from different snapshots are random variables, we design the corresponding weights according to two different ways, i.e., the Capon’s spectrum using limited snapshots and the Fourier spectrum using the current snapshot. Moreover, we apply the weighted idea to both the direct data domain (D3) SR-STAP and SRSTAP using multiple snapshots from adjacent target-free range bins. Simulation results illustrate that our proposed algorithms outperform the existing SR-STAP and D3SR-STAP algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive and Weighted Collaborative Representations for image classification

Recently, (Zhang et al., 2011) proposed a classifier based on collaborative representations (CR) with regularized least squares (CRC-RLS) for image face recognition. CRC-RLS can replace sparse representation (SR) based classification (SRC) as a simple and fast alternative. With SR resulting from an l1-regularized least squares decomposition, CR starts from an l2-regularized least squares formul...

متن کامل

Airborne Radar STAP using Sparse Recovery of Clutter Spectrum

Space-time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Statistical-based STAP methods generally need sufficient statistically independent and identically distributed (IID) training data to estimate the clutter characteristics. However, most actual clutter scenarios appear only locally stationary and lack sufficient IID t...

متن کامل

Fast l1-regularized space-time adaptive processing using alternating direction method of multipliers

Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast l1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is...

متن کامل

Weighted sparse recovery with expanders

We derived the first sparse recovery guarantees for weighted l1 minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show t...

متن کامل

Performance Analysis of Stap Algorithms Based on Fast Sparse Recovery Techniques

In the field of space-time adaptive processing (STAP), spare recovery type STAP (SR-STAP) algorithms exploit formulation of the clutter estimation problem in terms of sparse representation of a small number of clutter positions among a much larger number of potential positions in the angle-Doppler plane, and provide an effective approach to suppress the clutter especially in very short snapshot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012